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Particle deposition on solar mirrors deteriorates the performance of concentrating solar power (CSP) plants considerably. 
To save water for cleaning activities and to increase the plant performance, an empirical soiling model was developed by 
the German Aerospace Center to calculate the decline in cleanliness - the soiling rate - of CSP collectors, based on 
meteorological and aerosol particle input parameters. Until now the model can only be applied to site locations with 
available measurements of the necessary input parameters. In this work, a new approach is investigated to extend the 
soiling model application to various locations: aerosol transport models simulate particle concentrations and many other 
parameters covering large areas, so they can provide the parameters that are needed as soiling model input. To implement 
this idea while following an integral and gradual process, the soiling model’s sensitivity for input data in a different 
resolution of time and aerosol particle size bins is investigated by adapting ground measurement data. The meteorological 
and particulate matter parameters provided by two transport models are compared to the ground measurement data. 
Finally, the data is adapted to the soiling model format, its performance with the new input data is validated and the best 
available input data source and configuration is determined. The validation of the soiling model for predicting 
photovoltaics (PV) soiling shows that the soiling model is universally applicable technology-wise too. 

 

1. Introduction 

CSP and PV plants are commonly installed in arid or semi-arid 
regions where the highest levels of direct normal irradiance are 
provided. At desert locations the aerosol particle concentration, 
especially the mineral dust load, can be high and particles deposit 
from the atmosphere onto solar mirrors. The soiling of CSP 
collectors leads to decreased plant performance and profit and 
makes cleaning with water necessary. Modelling the soiling losses 
and applying the best cleaning strategy considering changes in 
mirror reflectivity, electricity prices, solar irradiance and cleaning 
costs can increase the profit by 2-3 % [1]. Soiling of PV panels also 
decreases the PV plant performance, however the effect is slightly 
less severe for PV as compared to CSP soiling effects [10]. 
The empirical soiling model developed by DLR for the two 
locations Plataforma Solar de Almería (PSA) in Spain and Missour 
(MIS) in Morrocco calculates the daily decline in cleanliness, 
referred to as soiling rate (SR), based on input parameters such as 
meteorological data (humidity, wind speed and direction, 

temperature and surface pressure), particle number 
concentration, and collector design parameters. The data is 
obtained with ground measurements at the two locations. The 
soiling model is validated for the two sites PSA and Missour with 
available CSP SR measurements. The SR has been measured with 
the TraCS device, which compares the reflected with the incoming 
radiation by using two pyrheliometers and tracks the development 
of their ratio over time [3]. 
The application of the soiling model to comprehensive areas would 
enable SR predictions for new favorable CSP plant locations. 
Medium-range forecasting of SRs can support better strategical 
cleaning decisions in the operation of CSP plants, with the 
potential to save up to 70 % of the plant’s water consumption [2].  
In this work, the possibility of using numerical aerosol transport 
model data as input for the soiling model is investigated. Aerosol 
transport models cover large areas, applying grids with varying 
spatial resolutions, and provide forecasts of particle 
concentrations and meteorological parameters. Two validated 
transport models, the NMMB MONARCH Dust model developed by  
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the Barcelona Supercomputing Center (BSC), and the Copernicus 
CAMS model by the European Centre for Medium-Range Weather 
Forecasts (ECMWF), are utilized to generate the necessary input 
data for the soiling model (see Fig. 1). The NMMB model provides 
short to medium-range dust forecasts (up to 72 hours) for global 
and regional domains in three particle size bins with a spatial 
resolution of 30 km and a temporal resolution of 3 hours [5]. The 
CAMS model offers forecasts for five aerosol types (sea salt, dust, 
organic matter, black carbon and sulphate) with a spatial 
resolution of 80 km and a temporal resolution of 3 hours [6]. The 
validation of the soiling model with modelled input parameters is 
implemented for PSA and Missour with TraCS SR measurements. 
Validating the soiling model for predicting PV soiling rates with PV 
soiling measurements recorded at PSA is a step towards the 
model’s future application for this technology. This development is 
especially interesting against the background of the installed PV 
capacity which exceeds the CSP capacity by far and an increasing 
interest in hybrid CSP-PV plants, utilizing the advantages of both 
technologies. [4] 

  
Figure 1. Schematic presentation of substituting input parameters for the 

soiling model with aerosol transport model data 

 
2. Overview of the methodology for the assessment 

The methodology of this work implements several intermediate 
steps while following the final objective, which is to substitute 
ground measurement input data with modelled data. This gradual 
approach is important to justify the final results considering the 
previously achieved benchmarks as reference points. 
The sensitivity of the soiling model concerning its input parameter 
resolution is tested. Ground measurement data is adapted to the 
same configuration as the data provided by numerical transport 
models, which exhibits a lower time resolution and fewer particle 
size bins than the measured soiling model input data. The loss in 
information for averaging over periods of 1 hour, 3 hours and 
1 day and for summarizing 30 particle size channels to 3 bins and 
8 bins is captured and discussed. The soiling model performance 

with the adapted measurement data is validated and compared to 
its performance with original input data resolution by calculating 
the statistical criteria root-mean-square error (RMSE), mean 
absolute deviation (MAD) and bias. The results are taken as a 
reference for the ability of the soiling model to digest input data of 
lower resolution. 
Atmospheric aerosol transport models provide meteorological and 
aerosol particle data like temperature, wind speed, wind direction, 
surface pressure, relative humidity, particle mass concentration 
and particle deposition fluxes in several size bins and for varying 
aerosol types. The simulated values at the two locations PSA and 
Missour are compared to the measured ground data for these 
parameters for a period of two years (2017 and 2018). The quality 
of correlation between the modelled and measured parameters is 
evaluated with statistical criteria and graphically presented in 
plots. 
The model parametrization is optimized minimizing the RMSE. 
To enable a smooth integration of the aerosol transport model 
data into the soiling model, a novel method to extend the three 
particle size bins provided by the transport models to 30 size 
channels used by the soiling model is developed and tested.  In the 
NMMB Dust model, particle mass concentrations of mineral dust 
are provided in three size bins of 0.2 - 2.5 µm, 0.2 - 10 µm and 
0.2 - 20 µm (particle diameters) [5]. The CAMS model provides 
particle mass concentrations for mineral dust (0.06 - 1.1 µm, 
1.1 µm - 1.8 µm, 1.8 µm - 40 µm) and for sea salt aerosol particles 
(0.06 - 1 µm, 1 - 10 µm, 10 - 40 µm) in three size bins; organic 
matter, black carbon and sulphate aerosol particles are provided 
without a specification of size limits [6, 7, 8]. 
The performance of the soiling model with input data originating 
from the aerosol transport models NMMB and CAMS is evaluated 
and compared to its performance with original input data from 
ground measurements. The validation is implemented for the two 
locations PSA and Missour with k-fold cross-validation (k = 5) and 
the average RMSE, MAD and bias and their variation are presented.  
Measurements at PSA of the spectrometer EDM 164, a particle 
counter detecting particle number concentration in 31 size 
channels from 0.2 µm to 32 µm, are converted into a volumetric 
size distribution curve, using the effective (medium) diameter of 
each size channel (see Figure 2) [9].  
With the obtained particle volume distribution, for each channel a 
weighting factor is determined that describes the weight of this 
channel compared to the rest. These weighting factors, which are 
specific for each of the mentioned aerosol particle species and size 
limits provided by the transport models, are then used to convert 
the particle mass concentrations of the three transport model bins 
to 30 particle number concentrations, used in the soiling model. 
The soiling model performance with 3-bin configuration and with 
the extended 30-bin configuration for transport model data is 
tested, validated and discussed. 
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For the application of the soiling model to PV soiling the input data 
is used in its extended configuration with 30 particle size bins. 

 
Figure 2. Particle volume size distribution at PSA obtained by averaging 

minutely particle measurements (01/2017 - 03/2019) 

3. Implementation, Results and Discussion 

The first three sections of this chapter present results for 
modelling soiling of CSP collectors, the validation is implemented 
with the TraCS device at PSA and in Missour. Section 3.4 contains 
the application of the soiling model to PV modules, validated with 
the PV soiling measurements at PSA. 
 
3.1  Soiling Model Resolution Sensitivity Analysis 

To investigate the soiling model performance for input data with 
lower resolution, particle size channels are summarized and 
measurements are averaged over different periods. 
The combination of various particle size bins of the ground 
measurements recorded with the EDM 164 to 3 and 8 size bins 
according to NMMB model size limits and CAMS size limits (for 
dust) is implemented. For the summary of various particle number 
concentrations, the absolute standard deviation (STD) increases. 
The relative variation, expressed by the ratio of STD and average 
value, decreases due to the higher average value of summarized 
particle number concentrations.  
Volumetric particle size distribution for the original 
measurements (EDM 164) and for the adapted data according to 
NMMB 8, NMMB 3 and CAMS 3 are shown in Figure 3. While the 
original size distribution is dominated more by large particles and 
the transition from medium to coarse particles is sharp, the 
adapted configurations show a more balanced distribution, putting 
more weight on small particles. 
The adaption of the time resolution by averaging over periods of 
one hour, three hours and one day reduces the variability of 
parameters, especially if they are strongly fluctuating in their 
1-minute resolution. The occurrence of extreme values for 
meteorological parameters is reduced and the range of values that 
they take is more limited. Wind speed and wind direction are the 
most affected variables, with their STD decreasing by about 60 % 

for daily averages. Parameters that are more constant in general as 
temperature, relative humidity, and surface pressure are not 
affected as much by the averaging over time.  

 
Figure 3. Volumetric particle size distribution of ground observation in 

different transport model configurations at PSA (01/2017 - 03/2019)  
 
In the observed period (01/2017 to 03/2019) the measured 
average SR at PSA is -0.33%/day and in Missour -0.47 %/day. 
The performance of the soiling model with the adapted ground 
measurement of varying resolution is validated with five-fold 
cross-validation, dividing the PSA data set in a training set for the 
model parametrization and in a test set for the validation. The 
mean RMSE ± its STD around the mean of the five validation runs 
on the PSA test set is 0.527 ± 0.298 %/day for the original input 
data, in Missour the model predicts SRs with RMSE = 0.667 
± 0.011 %/day. The soiling model is underestimating the SR in 
general with biases of -0.142 ± 0.292 %/day (PSA) and -0.319 
± 0.022 %/day (MIS). 
While for the PSA test set the large variation (STD) makes it 
difficult to testify an impact of the adapted particle size bins on the 
soiling model performance, in Missour the variation is lower and 
for input data in the NMMB 3 particle bin configuration, the RMSE 
increases considerably by 11 %, the MAD is 16 % and the absolute 
value of the bias is 46 % increased. The CAMS 3 and the NMMB 8 
configurations result in a similar range of modelled SRs as the 
original particle size distribution for both PSA and Missour. 
The input data with adapted time resolution has little impact on 
the soiling model performance with the PSA test set. On the 
Missour set, the switch from minutely to hourly or three hourly 
values has little impact on the soiling model performance, while 
using daily averages results in a 5 % increased RMSE. With 
averaging input data over increasing time intervals, the model’s 
sensitivity for predicting extreme soiling rates is reduced.           
The calculated deposition velocities of particles from the 
atmosphere adhering on the mirror surface are shown over the 
particle diameter for varying input parameter resolutions of 1 
minute (original), 1 hour, 3 hours and 1 day in Figure 4. The 
parameter k indicates the number of the set which is used to 
validate in the k-fold validation process. 

1 10 1000.1
0.1 1 10 100
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Figure 4. Mean calculated deposition velocity against particle diameter for different time resolutions of input parameters 

 
The daily input parameter resolutions lead to a smaller deposition 
velocity for fine particles. For medium-sized and large particles the 
deposition velocity is not considerably influenced by the change of 
input time resolution. 
 
3.2  Intercomparison of Measured and Modelled Data 

To assess the quality of the data provided by transport models, the 
parameters of the transport models (model data sets) are 
compared to the ground measurements for the two locations PSA 
and Missour (reference or measured data sets). The correlation 
between reference and model parameter is quantified with the 
Person correlation coefficient (PCC), mean values of the 
parameters, bias, STD and RMSE. 
The intercomparison of the NMMB model with measurement data 
demonstrates that for some parameters like the temperature  
(PCCPSA,Temp = 0.6, PCCMIS,Temp = 0.55, shown in Figure 5) and the 
atmospheric pressure (PCCPSA,press = 0.88, PCCMIS,press = 0.85)  the 
NMMB transport model is able to make predictions with an 
acceptable correlation to the measured values. 

 
Figure 5. Modelled and measured temperatures at PSA (01/2017 - 03/2019), 

the colour bar shows the relative occurrence of data points in one pixel 

 

For other parameters, such as wind speed (Figure 6), wind 
direction, humidity and particle concentrations, the data do not 
correlate well with DLR measurements. The wind speed correlates 

with PCCPSA,windsp = 0.22 and PCCMIS,windsp = 0.10, the wind speed’s 
correlation is in a similar range. Especially the mismatch for wind 
characteristics may originate in topographical terrain conditions 
influencing these parameters, situated too closely for the model’s 
spatial resolution of 30 km sized grid cells to capture their 
influence. Both sites at PSA and in Missour are located in 
mountainous regions, where mountain chains surround the sites 
or are situated within a few kilometres.  

 
Figure 6. Modelled and measured wind speed at PSA (01/2017 - 03/2019) 

 
A factor degrading the correlation between measured and 
modelled particle concentrations, which correlate with factors 
between 0.1 and 0.35 for the different particle size categories, is 
that only dust aerosol particles are simulated. 
Subsequently, the intercomparison of CAMS transport model data 
and measured data at DLR stations is implemented, yielding 
slightly better correlations. Correlations of temperature are 
characterized by PCCPSA,Temp = 0.89 and PCCMIS, Temp = 0.95; surface 
pressure is correlating with PCCPSA,press = 0.98, PCCMIS,press = 0.88, 
the wind speed’s PCCs are 0.47 and 0.32 respectively. Modelled 
wind characteristics are in the same range as the recorded values, 
but their correlation is still minor as compared to the correlation 
of other parameters. The topographical properties at the sites 
complicate the simulation of wind speed and direction at exact 
locations by interpolating spatially between grid points (CAMS 

PSA set, k=2 Missour set, k=4

Paula Moehring




Paula M. Möhring     July 2019 
 

5 

spatial resolution: grid cells of 80 x 80 km). The overestimation of 
the surface pressure might be related to the spatial interpolation 
too, which is also implemented between vertical model layers. In 
the processes of soiling model parametrization and fitting, 
constant offsets in the parameters are resolved and only the linear 
correlation is of importance for the soiling model operation with 
transport model data. 
The CAMS-DLR correlation of the particle concentrations is 
improved for some particle size bins compared to the 
NMMB-generated particle concentrations, now showing 
correlations of up to 0.54 (for fine PM < 1 µm). Graphical examples 
of correlation are shown for the temperature (Figure 7) and 
surface pressure (Figure 8). 

 
Figure 7. Modelled and measured temperatures at PSA (01/2017 - 03/2019) 

 
Figure 8. Modelled and measured surface pressure at PSA (01/2017 - 03/2019) 

 
3.3 Soiling Model with Atmospheric Aerosol Model Input 

The soiling model with input data generated by the aerosol 
transport models NMMB and CAMS is implemented for 4 different 
cases: the two transport models with each two different particle 
bin modes (three-bin and artificially created 30-bin mode) are 
tested. The statistical evaluation criteria RMSE, MAD and bias for 
these configurations and the soiling model performance with 
original input data (DLR measurements, minutely resolution, and 
30 size bins) are presented in Figure 9. 

Figure 9. RMSE, MAD and bias of modelled SR compared to measured SR for 
different input parameter configurations, left: PSA and right: Missour, 

red central mark: mean of 5-fold validation, red line: median,  
variation: 50% within blue boxes 

 
Due to the large variation within the five-fold validation, for the 
PSA test set no general trend is conveyable. For the Missour set, 
the use of the NMMB 3 transport model data results in an 
increased RMSE of 1.13 ± 0.117 %/day, using the 30-bin 
configuration leads to a lower RMSE of 0.878 ± 0.178 %/day. The 
soiling model with CAMS model data is also performing better 
when used in 30-bin mode with an RMSE of 0.565 ± 0.002 %/day, 
which is about 17 % less than the 3-bin mode RMSE. The MADs 
reveal a similar tendency of the 30-bin mode mitigating the soiling 
model performance degradation. 
The modelled soiling rate is plotted against the observed SR for 
original and transport model input data in 4 configurations for the 
PSA test set with k = 3 (k-fold set) in Figure 10 and Figure 12. The 
same data is shown for the Missour set with k = 1 in Figure 11 and 
Figure 13. For the PSA test set, the better soiling model 
performance with CAMS data is noticeable for both bin modes.  
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Figure 10. Modelled vs. measured SR for original DLR input and 
NMMB 3/CAMS 3 input, PSA test, k = 3, in total 57 days 

 

Figure 11. Modelled vs. measured SR for original DLR input and 
NMMB 3/CAMS 3 input, MIS, k = 1, in total 310 days 

 
In the presentation for the Missour set,  the SR underestimation for 
using CAMS in its 3-bin configuration is distinct (confirmed also by 
the low bias of around - 0.45 %/day). A substantial improvement 
is achieved for using the CAMS 30-bin configuration (Figure 13). It 
is evident that the soiling model accuracy even with original 
ground measurement data is still low, as the spread of markers 
and the SR underestimation show, especially in Figure 11 and 13. 
 
The ranges of modelled SRs change when using transport model 
input data. Small SRs are modelled more frequently and high SRs 
are not modelled as often compared to using original input data. 
The modelled SRs at PSA, for example, go up to 0.75 %/day with 
original input, while for NMMB 30 input SRs values are only 
modelled up to 0.6 %/day, for CAMS up to 0.4 %/day. 
 
Considering the available options for input data sources, using the 
CAMS transport model in its extended 30-bin mode achieves the 
best results for the soiling model performance. Using the NMMB 
transport model data as input results in a slightly degraded model  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 12. Modelled vs. measured SR for original DLR input 
and NMMB 30/CAMS 30 input, PSA test, k = 3, in total 57 days 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Modelled vs. measured SR for original DLR input 
and NMMB 30/CAMS 30 input, MIS, k = 1, in total 310 days 

 
performance, characterized by a higher RMSE and a higher MAD. 
Regarding  the overall  weaker correlation of  NMMB model data  
with DLR measurements at PSA and in MIS, that emerged from the 
data intercomparison (3.2), this might be the main reason for the 
observed lower soiling model performance with this input data. 
The artificial generation of particle bins based on the volumetric 
particle distribution curve measured at PSA leads to better results. 
Applying this method to CAMS data allows utilizing its full 
potential and the overall weaker performance of NMMB data in the 
soiling model can be enhanced by it. 
 
3.4 Application of the Soiling Model to Photovoltaics 

Soiling of glazing surfaces is not a process that is exclusive to CSP 
collectors. PV modules also undergo a decrease in cleanliness over 
time when they are exposed to the environment. Both technologies 
experience optical losses due to diffuse reflection, scattering, and 
absorption of incoming light. Aerosol particles that adhere to the 
transmitting glass layer of the module scatter the incoming light in 
all directions, but mostly forward, and reduce the electricity 
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output and cell efficiency. The effect that a soiled glass layer has on 
the output of a PV system is generally smaller than the equally 
soiled CSP mirror has on the CSP system output. In CSP systems, 
the incoming light has to be reflected quite precisely within a small 
acceptance angle to reach the absorber and to be utilized for the 
heat transfer to the fluid. Light which is scattered by soiling 
particles to other directions than the acceptance angle (around 
25 mrad ≈ 1.5° for a parabolic EuroTrough collector) is lost, unlike 
in a PV system, where forward scattered light is still transmitted 
and reaches the PV cell within an acceptance angle that is by far 
wider than the CSP acceptance angle (can be up to 150°, depending 
on the incidence angle of the sun). [10]  

At PSA, the soiling rate of PV modules is measured by comparing 
the short circuit current of a soiled PV cell with the one of a 
regularly cleaned cell, the reference PV cell and calculating the 
daily change of this cleanliness ratio. PV SR measurements for 
240 days between April 2018 and February 2019 are available. 
The mean SR during this time is -0.071 %/day. 

The specific optical properties of CSP and PV technologies result in 
different soiling rates; CSP SRs measured with the TraCS device 
are approx. 8 times higher than measured PV SRs (Figure 14) [10]. 

Figure 14. Comparison of CSP and PV soiling at PSA, July to September 2018  

The soiling model converts the projected particle surface coverage 
into the cleanliness by fitting linearly through the correlation of 
surface coverage and measured soiling rate, thus with measured 
PV SRs, the soiling model should be able to capture the comparably 
lower SRs of this technology. [11] 
The statistical evaluation of the PV SR modelling compared the 
measured PV SR yields the following results (Table 1): 
Table 1. Statistical evaluation: means and standard deviation (STD) of RMSE, 
MAD, bias for the 5-fold validation on the PSA test set, all values in %/day 

RMSE  STDRMSE  MAD  STDMAD  bias  STDbias  
0.0939 0.0510 0.0638 0.0276 -0.0417 0.0349 

Like in its application to CSP soiling, the soiling model tends to 
underestimate the SR of PV, indicated by a negative bias. The 
values for RMSE and MAD are relatively large compared to the low 
average measured PV SR. 

The modelled PV SRs are plotted against the measured SRs of the 
PV module. Exemplarily two results of the five-fold 
cross-validation are presented (k = 2 and k = 4), also to show the 
variation that occurs using this validation method. The test set is 
switched chronologically in each step of the validation so that in 
total 5 different sets of 48 daily soiling rates are used to validate 
the soiling model. Depending on the selected set, the observed 
soiling rates vary: in the test set for k = 2 observed PV soiling rates 
range from 0 %/day to 0.2 %/day, for k = 4 observed daily soiling 
rates range up to 0.08 %/day. 

 
Figure 15. Modelled vs. measured PV soiling rates at PSA, 04/2018-02/2019, 

PSA test with k = 2, in total 48 days with SRs are plotted 

 
Figure 16. Modelled vs. measured PV soiling rates at PSA, 04/2018-02/2019, 

PSA test with k = 4, in total 48 days with SRs are plotted 
 

Generally, the modelled soiling rates are in the same range as the 
measured soiling rates, thus it can be conducted that the soiling 
model can predict the quantitatively lower soiling rates that occur 
in PV soiling. The discrepancy between modelled and observed 
soiling rates occur for example when the same soiling rate values 
are measured multiple times, as for k = 4 the observed soiling rates 
0 %/day, 0.018 %/day, 0.052 %/day, and 0.057 %/day. The 
accumulated observations originate from the data post-processing 
which includes manual fitting of raw cleanliness curves. The 
decline of PV cleanliness curves is very flat so the manual fitting is 
implemented over many days with a linear fit, resulting in a 
constant soiling rate. The soiling model does not simulate the 
soiling rates accordingly constant. 
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The soiling model can be used to predict soiling rates for PV 
modules with a model performance that is similar to its 
application on the CSP soiling rate calculation. 
 
4. Conclusion 

Several research approaches intend to model soiling rates based 
on combining and interpolating ground measurements to soiling 
maps and by using GIS and a soiling potential model  [12, 13, 14, 
15, 16]. In this work, an approach using a soiling model with input 
data obtained by numerical transport models is pursued in order 
to achieve more exact and spatially more comprehensive soiling 
data. Data generated by two different transport models, NMMB 
and CAMS, in each two configurations, 3 and 30 particle size bins, 
are used as soiling model input. 
Among the four different options, using the CAMS transport model 
in the extended 30 particle size bins configuration achieves the 
best results. The obtained soiling rate predictions are closest to the 
soiling model performance which can be achieved with original 
input data.  
The performance of the soiling model on the PSA test set with 
transport model input data is slightly decreased as compared to 
the soiling model performance with original input data, but a 
general trend is not conveyable because of the variation in the 
validation results. For the Missour set, using NMMB 3 transport 
model data results in an about 70 % increased RMSE compared to 
using ground measurement data as soiling model input. The use of 
NMMB data with 30 size bins leads to a less increased RMSE which 
is only 30 % higher than the RMSE achieved with ground 
measurement data. Modelled soiling rates for Missour with 
CAMS 3 input data underestimate the observed soiling rate but a 
substantial improvement can be achieved for using the 30 
artificially generated particle size bins. This shows that the novel 
method for artificial generation of particle size bins based on the 
particle size distribution curve of PlaSolA has the potential to solve 
the challenge of the generally low number of particle size bins 
provided by aerosol transport models. 
A general tendency of the soiling model to underestimate the 
soiling rate, characterized by a negative bias, is present for original 
input data and continues if transport model data input is used. 
 
The soiling model sensitivity analysis for the soiling model 
behaviour with adapted in-situ measurement data showed the 
influence of temporal and particle size input parameter resolution 
on the soiling model performance. Generally, the frequency of 
extreme values for meteorological and aerosol particle 
concentration parameters is reduced for averaging over increasing 
time intervals and especially daily averaging can lead to 
inaccurately modelled soiling rates. Changing the number of 
particle size bins from 30 to 3 bins or 8 bins leads to a similar 
range of modelled soiling rates as the original particle size 

distribution, with exception of the NMMB 3 modification which 
underestimates the soiling rate considerably. 
The comparison of aerosol transport model data to ground 
measurement data at Plataforma Solar de Almería (Spain) and in 
Missour (Morocco) shows that the NMMB model can make 
predictions which correlate well with the measured values for 
temperature and pressure. For other parameters, however (wind 
speed, wind direction, humidity, PM2.5, PM10, and PM20), the 
simulated data does not correlate well with DLR measurements. 
This may be due to topographical terrain conditions influencing 
these parameters situated too closely for the model’s spatial 
resolution – grid cell sizes of about 30 km – to capture their 
influence. Another degrading factor is that NMMB’s only simulates 
dust aerosol particles. The change from 3 to 8 particle size bins 
might improve the correlation in the future. 
The data provided by the CAMS transport model correlates better 
with DLR measurements. Temperature, pressure and relative 
humidity correlate almost linearly. Modelled wind speed and wind 
direction are in the same range as the recorded values but the 
linear relation between model and reality for these parameters is 
not distinct which might again be the result of the spatial model 
resolution (even less with 80 km grid cells). Topographical 
properties at the sites, as mountain chains surrounding the 
PlaSolA and the mountainous region in Missour, complicate the 
estimation of wind characteristics with spatial interpolation 
between grid points.  
The application of the soiling model to PV soiling shows that it can 
model the quantitatively lower PV SRs. This is especially 
interesting because PV and CSP continue to coexist and 
complement each other increasingly in the form of hybrid plants, 
incorporating the advantages of both technologies. The soiling 
model predicts soiling rates for PV modules with a model 
performance that is similar to its application on the CSP soiling 
rate prediction.  
 
The results of this thesis show that it is generally possible to use 
transport model data in combination with a soiling model to 
predict soiling losses. Several steps for improving the soiling 
model results were identified. A challenge is the currently low 
accuracy of the soiling model even when operated with ground 
measurement data. In the future, the utilized transport models 
should be assessed with regard to which aerosol types their output 
includes. If more aerosol species are provided within the aerosol 
transport model output, like in the CAMS model, the soiling model 
performance is better. With additional information of eight instead 
of three particle size bins in the NMMB model, a further 
improvement is probable, especially when the generation of 30 
artificial size bins is adapted following the method introduced in 
this work. Regarding the low correlations between modelled and 
measured wind characteristics, consulting other sources for wind 
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data as wind maps used for the wind energy industry might be a 
solution, since they reproduce the influence of topographical 
features close to the sites more accurately. [17] 
The next important step is the further improvement of the soiling 
model. Then, ways to create a soiling map and soiling forecasts 
based on using aerosol transport model data as input can be 
pursued. Future research approaches should include methods for 
processing the large data volume and for automatization at an 
early stage. The here presented validation of using numerical 
aerosol transport models – considering also their performance – as 
input for the empirical soiling model opens up the possibilities of 
compiling soiling maps covering comprehensive areas and enables 
forecasting of soiling rates for exact locations without taking 
ground measurements. 
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